Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Brain Res ; 1831: 148820, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417653

RESUMO

Epilepsy is a prevalent chronic neurological disorder characterized by recurrent seizures and brain dysfunction. Existing antiepileptic drugs (AEDs) mainly act on neurons and provide symptomatic control of seizures, but they do not modify the progression of epilepsy and may cause serious adverse effects. Increasing evidence suggests that reactive astrogliosis is critical in the pathophysiology of epilepsy. However, the function of reactive astrocytes in epilepsy has not been thoroughly explored. To provide a new perspective on the role of reactive astrocytes in epileptogenesis, we identified human astrocyte-specific genes and found 131 of these genes significantly differentially expressed in human temporal lobe epilepsy (TLE) datasets. Multiple astrocytic functions, such as cell adhesion, cell morphogenesis, actin filament-based process, apoptotic cell clearance and response to oxidative stress, were found to be promoted. Moreover, multiple altered astrocyte-specific genes were enriched in phagocytosis, perisynaptic astrocyte processes (PAPs), plasticity, and synaptic functions. Nine hub genes (ERBB2, GFAP, NOTCH2, ITGAV, ABCA1, AQP4, LRP1, GJA1, and YAP1) were identified by protein-protein interaction (PPI) network analysis. The correlation between the expression of these hub genes and seizure frequency, as well as epilepsy-related factors, including inflammatory mediators, complement factors, glutamate excitotoxicity and astrocyte reactivity, were analyzed. Additionally, upstream transcription factors of the hub genes were predicted. Finally, astrogliosis and the expression of the hub genes were validated in an epileptic rat model. Our findings reveal the various changes in astrocyte function associated with epilepsy and provide candidate astrocyte-specific genes that could be potential antiepileptogenic targets.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Ratos , Humanos , Animais , Epilepsia do Lobo Temporal/metabolismo , Astrócitos/metabolismo , Gliose/metabolismo , Convulsões/metabolismo , Epilepsia/metabolismo
2.
Clin Interv Aging ; 19: 163-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332967

RESUMO

Background: There is growing evidence that an antioxidant diet is a protective factor against frailty. However, few studies have examined the effect of comprehensive dietary antioxidants on frailty symptoms. The aim of this study was to examine the relationships between the composite dietary antioxidant index (CDAI) and frailty and the underlying mechanisms involved. Methods: Based on the National Health and Nutrition Survey (NHANES) 2003-2018, this study included 11,277 older persons aged ≥60 years. In this study, frailty was defined as having a total score >0.21 on the 49-item frailty index. Six dietary antioxidants were selected for use in calculating the CDAI. A weighted multiple logistic regression model with subgroup analysis and restricted cubic splines (RCSs) were used to examine the association between the CDAI and frailty. To examine the role of oxidative stress, mediation analyses were also conducted. Results: The association between the CDAI score and frailty risk was significant according to the multivariate model. Compared with participants in tertile 1, participants in both tertile 2 and tertile 3 had lower odds of developing frailty symptoms (OR=0.86; 95% CI=0.75-0.97; P=0.02; and OR=0.81; 95% CI=0.70-0.93; P=0.003). According to the subgroup analyses, the differences in interactions were not statistically significant. There was also a potential nonlinear relationship between the CDAI score and frailty risk. The serum albumin concentration and uric acid concentration had significant mediating effects on the association between the CDAI score and frailty index, with 19.25% (P=0.002) and 21.26% (P < 0.001) of the total, respectively. Conclusion: Frailty is negatively associated with the CDAI score, which may be partially mediated by oxidative stress.


Assuntos
Antioxidantes , Fragilidade , Idoso , Humanos , Idoso de 80 Anos ou mais , Idoso Fragilizado , Inquéritos Nutricionais , Dieta , Estresse Oxidativo
3.
Transl Psychiatry ; 13(1): 337, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914711

RESUMO

The relationships of Klotho levels with cognition and dementia are poorly understood. This study aimed to investigate the association between Klotho levels and cognitive function and to determine causality between Klotho and dementia using Mendelian randomization (MR). Based on data from the National Health and Nutrition Survey (NHANES) 2011-2014, this study consisted of 1875 older adults aged 60-79 years. Cognitive function was assessed by the digit symbol substitution test (DSST). We performed weighted multivariable-adjusted linear regression to assess the association between Klotho concentrations and cognitive function. Then, 2-sample MR was conducted to assess the causal relationship between Klotho and dementia. The inverse variance weighted (IVW) method was used as the primary analysis. We observed a positive association between serum Klotho concentrations and the results of the Digit Symbol Substitution test (DSST) (T2: ß 2.16, 95% CI: 0.30-4.01, P = 0.03, T3: ß 2.48, 95% CI: 0.38-4.57, P = 0.02) after adjusting for the covariates. Moreover, there was also a potential nonlinear relationship between Klotho and DSST. The IVW method showed that genetically predicted high Klotho levels were not significantly associate with any type of dementia, including Alzheimer's disease (OR = 1.03, 95% CI: 0.96-1.10, P = 0.46), vascular dementia (OR = 1.04, 95% CI: 0.87-1.25, P = 0.66), frontotemporal dementia (OR = 0.73, 95% CI: 0.47-1.14, P = 0.16), or dementia with Lewy bodies (OR = 1.03, 95% CI: 0.87-1.23, P = 0.73). In the cross-sectional observational study, Klotho and cognitive function were significantly correlated; however, findings from MR studies did not indicate a causal relationship between Klotho and dementia.


Assuntos
Doença de Alzheimer , Análise da Randomização Mendeliana , Idoso , Humanos , Cognição , Estudos Transversais , Estudo de Associação Genômica Ampla , Inquéritos Nutricionais
4.
J Clin Med ; 12(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36836190

RESUMO

The distribution profile of plasma homocysteine (Hcy) in young adults and its related factors are not well understood. We performed a generalized estimating equations (GEE) analysis for plasma-Hcy-correlated factors in 2436 young adults, aged 20-39 years, from a health checkup population. We observed that the mean Hcy concentration in males (16.7 ± 10.3 µmol/L) was significantly higher than that in females (10.3 ± 4.0 µmol/L), and hyperhomocysteinemia (HHcy) prevalence in males was 5.37 times than that in females (33.3% vs. 6.2%). A GEE analysis stratified by sex indicated that age (B = -0.398, p < 0.001) and LDL-C (B = -1.602, p = 0.043) were negatively correlated, while BMI (B = 0.400, p = 0.042) was positively correlated, with the Hcy level in young males. ALT (B = -0.021, p = 0.033), LDL-C (B = -1.198, p < 0.001) and Glu (B = -0.446, p = 0.006) were negatively correlated, while AST (B = 0.022, p = 0.048), CREA (B = 0.035, p < 0.001), UA (B = 0.004, p = 0.003) and TG (B = 1.042, p < 0.001) were positively correlated, with the Hcy level in young females. These results suggest that young males have a significantly higher plasma Hcy level and HHcy prevalence than young females; therefore, more attention should be paid to the reason for and effect of the higher HHcy prevalence in young males.

5.
J Proteomics ; 272: 104776, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36423857

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease, and the pathogenic mechanism that underlies ALS is still unclear. We analyzed the differentially expressed proteins (DEPs) in the spinal cord between SOD1-G93A transgenic mice at the onset stage and non-transgenic (NTG) littermates based on 4D label-free quantitative proteomics (4D-LFQ) with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In our study, 189 DEPs were screened, of which 166 were up-regulated and 23 down-regulated. Clusters of Orthologous Groups (COG)/ EuKaryotic Orthologous Groups (KOG) classification, subcellular localization annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, clustering analysis and protein-protein interaction (PPI) network analyses were performed. Parallel reaction monitoring (PRM) analysis validated 48 proteins from immunity and inflammation-related pathways of KEGG. We described the function and distribution of DEPs, most of which were involved in the following pathways: complement and coagulation cascades, antigen processing and presentation, NF-kappa B signaling pathway, Retinoic acid-inducible gene I (RIG) -I-like receptor signaling pathway, the extracellular matrix-receptor (ECM-receptor) interaction, focal adhesion, phagosome and lysosome. PPI network analysis identified Fn1, Fga, Serpina1e and Serpina3n as potential biomarkers. Our discoveries broaden the view and expand our understanding of immunity and inflammation in ALS. SIGNIFICANCE: This study gives a comprehensive description of DEPs in the spinal cord proteomics of SOD1-G93A mice at the onset period. Compared with a previous study focusing on progressive stage, we showed that immunity and inflammation play an important role at the onset stage of ALS. Several pathways validated by PRM bring new insight to the pathological mechanisms of ALS. The participation of RIG-I-like signaling pathway in ALS and potential biomarkers Fga, Fn1, Serpina1e and Serpina3n are supplements to existing knowledge.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Transgênicos , Medula Espinal/metabolismo , Medula Espinal/patologia , Inflamação/metabolismo , Modelos Animais de Doenças , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Front Cell Neurosci ; 16: 1069617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531135

RESUMO

Endothelin-1 (ET-1), a secreted signaling peptide, is suggested to be involved in multiple actions in various tissues including the brain, but its role in amyotrophic lateral sclerosis (ALS) remains unknown. In this study, we detected the expression changes as well as the cellular localization of ET-1, endothelin A (ET-A) and endothelin B (ET-B) receptors in spinal cord of transgenic SOD1-G93A (TgSOD1-G93A) mice, which showed that the two ET receptors (ET-Rs) expressed mainly on neurons and decreased as the disease progressed especially ET-B, while ET-1 expression was up-regulated and primarily localized on astrocytes. We then explored the possible mechanisms underlying the effect of ET-1 on cultured NSC34-hSOD1G93A cell model. ET-1 showed toxic effect on motor neurons (MNs), which can be rescued by the selective ET-A receptor antagonist BQ-123 or ET-B receptor antagonist BQ-788, suggesting that clinically used ET-Rs pan-antagonist could be a potential strategy for ALS. Using proteomic analysis, we revealed that 110 proteins were differentially expressed in NSC34-hSOD1G93A cells after ET-1 treatment, of which 54 were up-regulated and 56 were down-regulated. Bioinformatic analysis showed that the differentially expressed proteins (DEPs) were primarily enriched in hippo signaling pathway-multiple species, ABC transporters, ErbB signaling pathway and so on. These results provide further insights on the potential roles of ET-1 in ALS and present a new promising therapeutic target to protect MNs of ALS.

7.
PLoS One ; 17(2): e0255710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35113871

RESUMO

Modestly increased expression of transactive response DNA binding protein (TDP-43) gene have been reported in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neuromuscular diseases. However, whether this modest elevation triggers neurodegeneration is not known. Although high levels of TDP-43 overexpression have been modeled in mice and shown to cause early death, models with low-level overexpression that mimic the human condition have not been established. In this study, transgenic mice overexpressing wild type TDP-43 at less than 60% above the endogenous CNS levels were constructed, and their phenotypes analyzed by a variety of techniques, including biochemical, molecular, histological, behavioral techniques and electromyography. The TDP-43 transgene was expressed in neurons, astrocytes, and oligodendrocytes in the cortex and predominantly in astrocytes and oligodendrocytes in the spinal cord. The mice developed a reproducible progressive weakness ending in paralysis in mid-life. Detailed analysis showed ~30% loss of large pyramidal neurons in the layer V motor cortex; in the spinal cord, severe demyelination was accompanied by oligodendrocyte injury, protein aggregation, astrogliosis and microgliosis, and elevation of neuroinflammation. Surprisingly, there was no loss of lower motor neurons in the lumbar spinal cord despite the complete paralysis of the hindlimbs. However, denervation was detected at the neuromuscular junction. These results demonstrate that low-level TDP-43 overexpression can cause diverse aspects of ALS, including late-onset and progressive motor dysfunction, neuroinflammation, and neurodegeneration. Our findings suggest that persistent modest elevations in TDP-43 expression can lead to ALS and other neurological disorders involving TDP-43 proteinopathy. Because of the predictable and progressive clinical paralytic phenotype, this transgenic mouse model will be useful in preclinical trial of therapeutics targeting neurological disorders associated with elevated levels of TDP-43.


Assuntos
Esclerose Lateral Amiotrófica
8.
J Int Med Res ; 49(7): 3000605211033219, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34311603

RESUMO

OBJECTIVE: To investigate whether GSTA1, GSTO2, and GSTZ1 are relevant to an increased risk of amyotrophic lateral sclerosis (ALS) in a Chinese population. METHODS: In this study, 143 sporadic ALS (sALS) patients (83 men, 60 women) and 210 age- and sex-matched healthy subjects were enrolled. Blood samples were collected by venipuncture. Genomic DNA was isolated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) according to the manufacturer's instructions. The potential associations between ALS and GSTA1, GSTO2, and GSTZ1 polymorphisms were estimated using chi-squared analysis and unconditional logistic regression. RESULTS: The D allele and genotype frequencies of GSTO2 were increased in sALS patients compared with healthy subjects, indicating that the GSTO2 DD genotype was associated with an increased risk of sALS (odds ratio [OR] = 3.294, 95% confidence interval [CI] = 1.039-10.448). However, a significant association between the DD genotype and the risk of sALS was evident in men only (OR = 7.167, 95% CI = 1.381-37.202). CONCLUSION: This study revealed that the D allele and genotype frequencies of GSTO2 were increased in sALS patients. The GSTO2 DD genotype was associated with an increased risk of sALS in men in a Chinese population.


Assuntos
Esclerose Lateral Amiotrófica , Predisposição Genética para Doença , Glutationa Transferase , Esclerose Lateral Amiotrófica/genética , Povo Asiático/genética , China , Feminino , Genótipo , Glutationa Transferase/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
9.
Neuroscience ; 465: 11-22, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33945797

RESUMO

Amyotrophic lateral sclerosis (ALS) is one of the leading causes of death associated with neurodegenerative diseases worldwide, and the progression of the disease is characteristically accompanied by severe neuroinflammation. Neuroprotective effects of oxymatrine (OMT) were shown to be due to reduced neuroinflammation in the mouse models of Alzheimer's disease and Parkinson's disease. The present study investigated whether OMT has a therapeutic potential in transgenic SOD1-G93A (TgSOD1-G93A) mice. Daily OMT treatment started at the age of 55 days until the end stage of the disease. Body weight and rotarod motor performance were assessed every 3 days starting from 70 days of age. Footprints were recorded to measure the stride length 40 days and 60 days after the initiation of the treatment. Some animals were sacrificed at the age of 115 days, and the lumbar spinal cord was harvested for immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR) to evaluate the neuroinflammatory responses. The results indicated that treatment with OMT delayed body weight loss, improved motor performance, and prolonged the survival of SOD1-G93A mice. Mechanistically, OMT treatment enhanced motor neuronal survival and alleviated the activation of microglia and astrocytes compared with those in the vehicle-treated group. Furthermore, the expression of the proinflammatory mediators was downregulated, and the expression of the anti-inflammatory factors was upregulated in the OMT-treated group compared with those in the vehicle-treated group (P < 0.05). Thus, the treatment with OMT had neuroprotective effects, promoting neuronal survival and extending the lifetime of SOD1-G93A mice by suppressing neuroinflammation.


Assuntos
Alcaloides , Esclerose Lateral Amiotrófica , Alcaloides/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios Motores , Quinolizinas , Medula Espinal , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
10.
Lipids Health Dis ; 20(1): 31, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845846

RESUMO

BACKGROUND: Hyperhomocysteinemia (HHcy) is associated with various health problems, but less is known about the gender differences in risk factors for high plasma homocysteine (Hcy) levels. METHODS: In this study, a retrospective study was carried out on 14,911 participants (7838 males and 7073 females) aged 16-102 years who underwent routine checkups between January 2012 and December 2017 in the Health Management Department of Xuanwu Hospital, China. Anthropometric measurements, including body mass index (BMI) and waist-to-hip ratio, were collected. Fasting blood samples were collected to measure the biochemical indexes. The outcome variable was Hcy level, and a generalized estimating equation (GEE) analysis was used to identify the associations of interest based on gender. RESULTS: Males exhibited increased Hcy levels (16.37 ± 9.66 vs 11.22 ± 4.76 µmol/L) and prevalence of HHcy (37.0% vs 11.3%) compared with females. Hcy levels and HHcy prevalence increased with age in both genders, except for the 16- to 29-year-old group. GEE analysis indicated that irrespective of gender, aspartate aminotransferase, creatinine, uric acid, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol levels were positively correlated with Hcy levels, and alanine aminotransferase, total cholesterol and glucose were negatively correlated with Hcy levels. However, age, BMI and triglycerides (TGs) were positively correlated with Hcy levels exclusively in females. CONCLUSIONS: Gender differences in risk factors for high plasma Hcy levels were noted. Although common correlational factors existed in both genders, age, BMI and TGs were independent risk factors for Hcy levels specifically in females.


Assuntos
Homocisteína/sangue , Modelos Biológicos , Caracteres Sexuais , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Análise Fatorial , Feminino , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
11.
Front Neurosci ; 14: 817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903591

RESUMO

Cyclooxygenase-2 (COX-2) is reported to be activated during the course of amyotrophic lateral sclerosis (ALS) development and progression. However, the roles of COX-2 in aggravating ALS and the underlying mechanism have been largely overlooked. To reveal the mechanisms, the canonical SOD1G93A mouse model was used as an experimental model for ALS in the current study. In addition, a specific inhibitor of COX-2 activity, rofecoxib, was orally administered to SOD1G93A mice. With this in vivo approach, we revealed that COX-2 proinflammatory signaling cascades were inhibited by rofecoxib in SOD1G93A mice. Specifically, the protein levels of COX-2, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α were elevated as a result of activation of astrocytes and microglia during the course of ALS development and progression. These proinflammatory reactions may contribute to the death of neurons by triggering the movement of astrocytes and microglia to neurons in the context of ALS. Treatment with rofecoxib alleviated this close association between glial cells and neurons and significantly decreased the density of inflammatory cells, which helped to restore the number of motor neurons in SOD1G93A mice. Mechanistically, rofecoxib treatment decreased the expression of COX-2 and its downstream signaling targets, including IL-1ß and TNF-α, by deactivating glial cells, which in turn ameliorated the progression of SOD1G93A mice by postponing disease onset and modestly prolonging survival. Collectively, these results provide novel insights into the mechanisms of ALS and aid in the development of new drugs to improve the clinical treatment of ALS.

12.
Neuroscience ; 432: 84-93, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114100

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motor neuron loss and gliosis in the spinal cord, brain stem and cortex. The Notch signaling pathway has been reported to be dysfunctional in neurodegenerative diseases, including ALS. However, the exact mechanism is still unclear. Here, we detected Notch signaling activation in proliferating glial cells, Notch inactivation in motor neurons in the spinal cord of the SOD1-G93A model, and dramatic changes of cellular relocalization of Notch pathway signaling molecules, including activated Notch intracellular domain (NICD), Notch ligands (Jagged1 and DLL4) and the target gene Hes1. We found that Notch activation was universal in proliferating astrocytes and that the Notch ligand Jagged1 was uniquely upregulated in proliferating microglia, while DLL4 expression was increased in both activated astrocytes and degenerating oligodendrocytes. Our results indicate that microglia may play an important role in the intercellular receptor-ligand interaction of the Notch signaling pathway and contribute to the pathogenesis of motor neuron loss in ALS mice. Further experiments are required to clarify the exact mechanism responsible for Notch dysfunction in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
13.
Adv Exp Med Biol ; 1173: 145-152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456209

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. The etiology and pathogenesis of this devastating disease remain largely unknown. Increasing evidence suggests that iron accumulation is involved in the onset and progression of ALS. In this review, we discuss the regulation of iron homoeostasis in the brain, the misregulation of iron homeostasis in ALS, and its possible roles in the mechanism of the disease. Finally, we summarize the recent progress and problems with respect to iron chelator therapies on ALS, aiming to propose a new therapeutic strategy to ameliorate the progression of the disease.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Encéfalo/metabolismo , Ferro/metabolismo , Homeostase , Humanos , Neurônios Motores/patologia , Degeneração Neural
15.
J Vis Exp ; (144)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30829325

RESUMO

Intrathecal (IT) injection of adeno-associated virus (AAV) has drawn considerable interest in CNS gene therapy by virtue of its safety, noninvasiveness, and excellent transduction efficacy in the CNS. Previous studies have demonstrated the therapeutic potency of AAV-delivered gene therapy in neurodegenerative disorders by IT administration. However, high rates of unpredictable failure due to the technical limitation of IT administration in small animals have been reported. Here, we established a scoring system to indicate the success extent of lumbar puncture in small animals by adding 1% lidocaine hydrochloride into the injection solution. We further show that the extent of transient weakness following injection can predict the transduction efficiency of AAV. Thus, this IT injection method can be used to optimize therapeutic trials in mouse models of CNS diseases that afflict wide regions of the CNS.


Assuntos
Adenoviridae/patogenicidade , Vetores Genéticos/genética , Injeções Espinhais/métodos , Animais , Camundongos
16.
Neurochem Res ; 43(12): 2304-2312, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30317421

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive motor neuron disease for which only limited effective therapeutics are available. Currently, TAR DNA-binding protein 43 (TDP-43) is recognized as a pathological and biochemical marker for ALS. Increases in the levels of aggregated or mislocalized forms of TDP-43 might result in ALS pathology. Therefore, clearance pathways for intracellular protein aggregates have been suggested as potential therapeutic targets for the treatment of ALS. Here we report that treatment of motor neuron-like NSC34 cells overexpressing TDP-43 with diallyl trisulfide (DATS) induced neuronal autophagy and lysosomal clearance of TDP-43 and C-terminal TDP-43 fragments. We also observed that the antioxidant transcription factor NF-E2-related factor 2 (Nrf2) was accumulated in the nucleus and the expression of the antioxidant enzymes heme oxygenase1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO1) was increased. Consequently, DATS suppressed the increase in the levels of reactive oxygen species induced by TDP-43 expression. This study extends the findings of prior reports indicating that lower doses of DATS mediate cell survival in part by inducing autophagy and activating the Nrf2/antioxidant response element pathway.


Assuntos
Compostos Alílicos/farmacologia , Antioxidantes/farmacologia , Proteínas de Ligação a DNA/biossíntese , Lisossomos/metabolismo , Neurônios Motores/metabolismo , Fármacos Neuroprotetores/farmacologia , Sulfetos/farmacologia , Elementos de Resposta Antioxidante/efeitos dos fármacos , Elementos de Resposta Antioxidante/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Proteínas de Ligação a DNA/toxicidade , Relação Dose-Resposta a Droga , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
17.
Oncotarget ; 8(59): 99296-99311, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29245902

RESUMO

Although the roles of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) in regulating amyloid precursor protein (APP) cleavage and ß-amyloid protein (Aß) production have been the subjects of numerous investigations, their effects on tau phosphorylation have been largely overlooked. Using human TauP301S transgenic (Tg) mice as in vivo model, our results demonstrated that PGI2 and PGF2α mediated the effects of tumor necrosis factor α (TNF-α) and Zinc ions (Zn2+) on upregulating the phosphorylation of tau via the PI3-K/AKT, ERK1/2 and JNK/c-Jun signaling pathways. Specifically, we initially found that high level of Zn2+ upregulates the expression of COX-2 via stimulating the activity of TNF-α in a zinc transporter 3 (ZnT3)-dependent mechanism. COX-2 upregulation then stimulates the phosphorylation of tau at both Ser 202 and Ser 400/Thr 403/Ser 404 via PGI2 and F2α treatment either in i.c.v.-injected mice or in n2a cells. Using n2a cells as in vitro model, we further revealed critical roles for the PI3-K/AKT, ERK1/2 and JNK/c-Jun pathways in mediating the effects of PGI2 and F2α in the phosphorylation of tau. Finally, NS398 treatment delayed the onset of cognitive decline in TauP301S Tg mice according to the nest construction or limb clasping test.

18.
Neuroscience ; 365: 192-205, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29024785

RESUMO

Mutant SOD1 causes amyotrophic lateral sclerosis (ALS) by a dominant gain of toxicity. Previous studies have demonstrated therapeutic potential of mutant SOD1-RNAi delivered by intrathecal (IT) injection of recombinant adeno-associated virus (rAAV). However, optimization of delivery is needed to overcome the high degree of variation in the transduction efficiency and therapeutic efficacy. Here, on the basis of our previously defined, efficient IT injection method, we investigated the influence of injection speed on transduction efficiency in the central nervous system (CNS). We demonstrate that slow IT injection results in higher transduction of spinal cord and dorsal root ganglia (DRG) while fast IT injection leads to higher transduction of brain and peripheral organs. To test how these effects influence the outcome of RNAi therapy, we used slow and fast IT injection to deliver rAAVrh10-GFP-amiR-SOD1, a rAAV vector that expresses GFP and an artificial miRNA targeting SOD1, in SOD1-G93A mice. Both slow and fast IT injection produced therapeutic efficacy but the slow injection trended slightly toward a better outcome than the fast injection. These results demonstrate that IT injection speed influences the predominance of gene delivery at different CNS sites and should be taken into consideration in future therapeutic trials involving IT injection.


Assuntos
Esclerose Lateral Amiotrófica , Terapia Genética/métodos , Mutação/genética , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Animais , Peso Corporal/genética , Proteínas de Ligação ao Cálcio/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Injeções Espinhais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Medula Espinal/patologia , Transdução Genética
19.
Mol Neurobiol ; 53(5): 3235-3248, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26050084

RESUMO

The lack of methods to deliver transgene expression in spinal cord has hampered investigation of gene function and therapeutic targets for spinal cord diseases. Here, we report that a single intrathecal injection of recombinant adeno-associated virus rhesus-10 (rAAVrh10) into the lumbar cistern led to transgene expression in 60 to 90 % of the cells in the spinal cord. The transgene was expressed in all cell types, including neurons, glia, ependymal cells, and endothelial cells. Additionally, the transgene was expressed in some brain areas up to the frontal cortex and the olfactory bulb. The rAAV was distributed predominantly in the spinal cord, where its genome copy was over ten times that of the peripheral organs. Compared with intravenous injection, another method for rAAV delivery to the broad central nervous system (CNS), the intrathecal injection reduced the dosage of rAAV required to achieve similar or higher levels of transgene expression in the CNS by ~100-fold. Finally, the transduced areas were co-localized with the perivascular spaces of Virchow-Robin, from which the rAAV spreads further into the CNS parenchyma, thus suggesting that rAAV penetrated the CNS parenchyma through this pathway. Taken together, we have defined a fast and efficient method to deliver widespread transgene expression in mature spinal cord in mice. This method can be applied to stably overexpress or silence gene expression in the spinal cord to investigate gene functions in mammalian CNS. Additionally, this method can be applied to validate therapeutic targets for spinal cord diseases.


Assuntos
Dependovirus/metabolismo , Vértebras Lombares/metabolismo , Recombinação Genética/genética , Transgenes , Animais , Inflamação/patologia , Injeções , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Camundongos , Especificidade de Órgãos , Punções , Transdução Genética
20.
Am J Transl Res ; 7(10): 1724-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26692920

RESUMO

Oxidative stress plays an important role in doxorubicin (DOX)-induced cardiotoxicity. Nuclear factor E2-related factor-2 (Nrf2) is a transcription factor that orchestrates the antioxidant and cytoprotective responses to oxidative stress. In the present study, we tested whether tert-butylhydroquinone (tBHQ) could protect against DOX-induced cardiotoxicity in vivo and, if so, whether the protection was associated with the up-regulation of the Nrf2 pathway. The results showed that treatment with tBHQ significantly decreased the DOX-induced cardiac injury in wild-type mice. Moreover, tBHQ ameliorated the DOX-induced oxidative stress and apoptosis. Further studies suggested that tBHQ increased the nuclear accumulation of Nrf2 and the Nrf2-regulated gene expression, including heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxido-reductase-1 (NQO-1) expression. Knocking out Nrf2 in mice abolished the protective effect of tBHQ on the DOX-induced cardiotoxicity. These results indicate that tBHQ has a beneficial effect on DOX-induced cardiotoxicity, and this effect was associated with the enhanced expression of Nrf2 and its downstream antioxidant genes, HO-1 and NQO-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA